
LA
N

L
Sc

ie
nc

e

Ultrascale Systems Research Center
a collaboration with the New Mexico Consortium and Los Alamos

Many unsolved problems are standing in the way of achieving exascale.

Scaling, systems software, and applications, to millions of nodes, and
billion way parallelism, reliability, I/O, and storage, are research
challenges at these scales.

USRC was created to address these challenges through collaboration.

USRC is looking for individuals who want to work in this challenging
area:
 • Students who have completed their course work and want to work on
 a thesis or dissertation topic
 • Faculty sabbaticals
 • Postdocs
 • Industry researchers

In its initial phase USRC will include the following research topics as
they relate to Exascale:
 • OS/systems/network software stacks
 • Scalable and Reliable Runtimes and Middleware
 • IO/Storage, parallel file systems
 • Data Intensive (DISC)
 • Cyber-Security

These interactions will be in person, where collaborators come to the
USRC located in Los Alamos, New Mexico for months, up to years, for
intense cooperative research.

usrc@newmexicoconsortium.org 505-412-4200

LA-UR 10-07443

LA
N

L
Sc

ie
nc

e Scalable Systems Software
for Exascale
At the
Ultrascale Systems Research Center

In anticipation of exascale supercomputers consisting of as many as one
million nodes, we are developing scalable system software to meet this
challenge. Key features required are:

 * Dynamic Response to load
 - Add servers as load increases, absorb servers a load decreases.
 * Resilient to failures
 - Services take over for failed servers and spawn new servers.
 * Distributed
 - State is distributed across servers and is recoverable on failures.

Initial proof of concept focuses on boot process and eliminates broadcasts
which can easily swamp a large network.

Our technique uses a consistent hash combined with virtual hardware
addresses to allow a node to directly contact a boot server rather than flood
the network with discovery packets.

The animation shows “Supernodes” booting individual compute clients, then as
the load increase more “Supernodes” are spawned and the load is balanced.
Cubes are supernodes, spheres are clients, message exchanges are shown
arrows traversing the network.

While currently focused on booting mechanisms, future plans are to
allow for specialized super-nodes processes that provide a variety of scalable
supercomputer services such as: job launching, resource management,
parallel debugging and cluster monitoring.

The Ultrascale Systems Research Center (USRC) is a collaboration between the New Mexico
Consortium (NMC) and LANL to engage universities and industry nationally in support of
exascale research.

usrc@lanl.gov

sharonm
Typewritten Text
LA-UR 10-07443

LA
N

L
Sc

ie
nc

e

(PRObE) Parallel Reconfigurable Observational
Environment: A large scale low-level systems
research user facility made possible by the
National Science Foundation.
2 large clusters (~1000 nodes each) donated by Los Alamos
National Laboratory and operated by the New Mexico Consortium in
LosAlamos, NM. All machines have Gigabit Ethernet, high speed
interconnect, and disks.

Dedicated to systems research at scale. Scientific codes are only
allowed as controls for realistic workloads for the systems under test.
Allocations will be for no less than ~300 nodes, and are available for
days to weeks at a time.

Full machine control. Physical power to each node and switch in the
allocated partition, capability of running any custom operating
system, as well as ability to perform low level instrumentation. The
machines are completely controllable from remote locations.

Work on-site.The New Mexico Consortium provides office space and
direct network connectivity to the machines in the building, as well as
physical access to the machines.

PRObE is a partnership of the New Mexico Consortium,
Los Alamos National Laboratory, Carnegie Mellon University, and the
University of Utah funded by the National Science Foundation.

The New Mexico Consortium is a non-profit corporation formed by the
three New Mexico Universities (New Mexico State University,
University of New Mexico and New Mexico Tech) to form research and
educational collaborations with Los Alamos National
Laboratory and academic and industry partners nationally.

For more information, see http://newmexicoconsortium.org/probe
For inquiries, contact: PRObE@newmexicoconsortium.org

sharonm
Typewritten Text
LA-UR 10-07443

LA
N

L
Sc

ie
nc

e

The Computer Cluster and Networking
Institute: Students learn how to stand up,
configure, and deploy very large scale computer
resources in this summer program in Los Alamos.

Teams of participants set up a fully
functioning cluster.

Each team solves a real world problem
posed by a team of mentors that includes
LANL computer scientists. Previous years’
teams have solved problems and come up
with solutions that were adopted by LANL
for use in LANL computing systems.

A unique opportunity to learn how to work well in a group and solve
interesting problems as a team. A broader goal is to expose students
to working with a national laboratory.

Guest lectures from LANL share their experience working on some of
the largest machines in the world. Students also participate in related
summer lecture series and tours of Los Alamos National Laboratory.

Open to undergraduate and junior college students. Participants are
paid to be on site for 10 weeks during the summer. Outstanding stu-
dents are well positioned to apply for internship opportunities with
LANL.

A partnership between the New Mexico Con-
sortium and LANL. Part of the New Mexico
Consortium’s Parallel Reconfigurable Obser-
vational Environment (PRObE) Facility funded
by the NSF. The summer program takes
place at the New Mexico Consortium
in Los Alamos.

The New Mexico Consortium is a non-profit corporation formed by the three New
Mexico Universities (New Mexico State University, University of New Mexico and
New Mexico Tech) to form research and educational collaborations with Los Alamos
National Laboratory and academic and industry partners nationally.

For more information, see http://newmexicoconsortium.org/probe
For inquiries, contact: PRObE@newmexicoconsortium.org

sharonm
Typewritten Text
LA-UR 10-07443

LA
N

L
Sc

ie
nc

e Supercomputing Challenge
Now in its 21st year, the Supercomputing
Challenge has been challenging New
Mexico students to come up with
computational science projects to solve
real world problems, since 1990.

The Challenge is a year-long program in
which teams of middle and high school
students work on a project from September
through April. It is project based learning which requires teamwork, research
skills, technical writing skills, programming skills, presentation skills and time
management. Teams interact with mentors in their learning process.

 In the 2009-2010 Challenge, over 350
 students and 58 teachers from 49
 schools formed 98 teams. The eight
 finalist teams are shown on the left.

 Projects were done in the agent-based
 modeling software of StarLogo TNG and
 NetLogo while other teams used high
level programming languages such as C, C++ and Java. A few teams used
MPI programming libraries to accomplish parallel programming.

The Challenge is both a competition and a learning community. The first place
winners receive $1,000 and the second place team members each get $500.
Many other awards are presented in the two-hour long ceremony.
Even an award for the best logo for the following year’s Challenge (see the
student-designed 2010-2011 logo and slogan in the upper right hand corner).

Thanks to many sponsors, the Challenge
is able to provide many scholarships. In
2010, $62,700 was awarded to 30 students.

Over 8000 students have participated in
the Challenge since 1990, all prepared a
little better with 21st century skills for the
market place of today.

David H. Kratzer, dhk@lanl.go

consult@challenge.nm.org
http://www.challenge.nm.org

sharonm
Typewritten Text
LA-UR 10-07443

LA
N

L
Sc

ie
nc

e Spikes and bubbles in turbulent
mixing: High Atwood number
Rayleigh-Taylor instability

The Rayleigh-Taylor instability occurs at the interface between a heavy fluid overlying a light
fluid, under a constant acceleration, and is of fundamental importance in a multitude of appli-
cations ranging from ICF to astrophysics and to ocean and atmosphere dynamics.

The flow starts from rest and small perturbations at the interface between the two fluids grow
to large sizes, interact nonlinearly, and eventually become turbulent. In many cases, the den-
sity ratio between the two fluids is large, e.g. air interpenetrating helium has a density ratio of
7, yet most studies to date address the low density ratio case and no Direct Numerical Simula-
tions (such that all scales of motion are resolved) have been performed for Atwood number,
A > 0.5 (corresponding to a density ratio of 3).

Previous results at A = 0.5 (Livescu et al, Journal of Turbulence 2009, Livescu and Ristorcelli,
Journal of Fluid Mechanics 2007 and 2008, Cabot and Cook, Nature Physics 2006) hint at
some startling new physics in high Atwood number Rayleigh-Taylor mixing, such as the asym-
metry of the mixing, not seen at small density differences.

The images presented here show the density field obtained from the largest fully resolved in-
stability simulation performed to date: Rayleigh-Taylor instability at A=0.75 (density ratio of 7)
on a 2304x40962 mesh. The results fully confirm the conjectures made earlier by the authors
and are in agreement with previous experiments for the layer growth rate. In particular, the
asymmetry of the mixing leads to a tangible alteration of the mixing layer: the formation of
"spikes" on the light fluid side and "bubbles" on the heavy fluid side."

Density field from a very large (2304x40962) Rayleigh-Taylor simulation at A=0.75 showing the
asymmetry of the mixing, with the formation of spikes and bubbles ~T on the two sides of the
mixing layer.

sharonm
Typewritten Text
LA-UR 10-07443

sharonm
Typewritten Text

sharonm
Typewritten Text

sharonm
Typewritten Text

sharonm
Typewritten Text

sharonm
Typewritten Text
Daniel Livescu, livescu@lanl.gov

LA
N

L
Sc

ie
nc

e

Head
Node

CN1 CN2 CNk...

CNk+1 CNk+2 CNl...
CNl+1 CNl+2 CNm...

CNm+1 CNm+2 CNn...

IO1

IO2

IO3

IOp

FS

FS

FS

FS

FS

Desktop Desktop Desktop Desktop

GOCFS: Cooperative Caching for HPC

HPC Environment
 - limited access to the FS
 - all nodes per job access same data
 - local caches waste RAM
 - reading from remote RAM faster than
 local disk

Cooperative Caching
 - all nodes per job cooperate for caching
 - data partitioned across all nodes
 - single copy of the data

Requirements
 - scalable (thousands of nodes per job)
 - general purpose (read/write)
 - cache any underlying �lesystem
 - assume data modi�ed only by the job
 - not for checkpointing
 - not for multiple users
 - no distributed locks
 - no master

Design
 - �les partitioned by full path name
 - a node is assigned as �le’s owner
 - each client can calculate the cache
 independently
 - all data and metadata kept on the
 same node
 - all operations redirected to the �le’s
 owner
 - content of the directories distributed
 across all nodes

Design Issues
 - slow directory read (has to read from
 all nodes)
 - rename blocks all requests until it is
 completed
 - usage of few big �les may lead to non-
 uniform load

Implementation
 - user space �lesystem (uses the 9P
 protocol)
- written in Google’s new programming
 language Go
 - LRU cache for data
 - write back for both data and metadata

FS

/bin/ls
/bin/sed
/etc/hosts
/lib/libc.so

Node 1

Node 2

Node 3

User
Process

Gocfs
PeerFS

ClientFS

User
Process

User
ProcessGocfs

PeerFS

ClientFS

User
Process

User
Process Gocfs

PeerFS

ClientFS

User
Process

FS

Node 23

File
Cache

File: test

Disk

ClientFS

Fid: 34

Node 23

File
Cache

File:

Disk

ClientFS

Fid: 34

Node 95

File
Cache

File: test2

ClientFS

Before

After

Distibuted Rename

sharonm
Typewritten Text
LA-UR 10-07443

sharonm
Typewritten Text
Latchesar Ionkov lionkov@lanl.gov

LA
N

L
Sc

ie
nc

e

0
5

10
15
20
25

0 20 40 60 80 100 120 140

Number of nodes

Generated

Original

CONCEPTUAL: http//conceptual.sourceforge.net/
ScalaTrace: http://moss.csc.ncsu.edu/~mueller/ScalaTrace/

Xing Wu, cnwuxing@gmail.com, North Carolina State University
Scott Pakin, pakin@lanl.gov, Los Alamos National Laboratory
Frank Mueller, mueller@cs.ncsu.edu, North Carolina State University

Automatic Conversion of Parallel
Applications to Benchmarks

Generation of parallel benchmarks that

 • Retain the original program behavior
 • Run on any platform
 • Are simple and easy to understand
Methodology: App Trace Benchmark

 • ScalaTrace: a highly scalable parallel application
 tracing tool
 • CONCEPTUAL: a programming language and
 compiler for rapid generation of network
 benchmarks
 • CONCEPTUAL Generator: a tool that generates
 CONCEPTUAL programs from traces obtained
 from parallel programs
Example: Sweep3d

 • Original: 1996 lines (Fortran)
 • Generated: 2127 lines (coNCePTuaL); will
 eventually be significantly smaller

 • Verification:

Original
Sweep3d

Generated
Sweep3d

Application
Trace

CONCEPTUAL

Program

MPI
Benchmark

ScalaTrace

CONCEPTUAL

Generator

CONCEPTUAL

Compiler

mpiP

mpiP

√ MPI operations

 153600 Send/Recv

 64 Bcast

 448 Allreduce

 48 Barrier

√ Msg volume

 1.84e+08 Send/Recv

 2.62e+03 Bcast

 2.94e+03 Allreduce

Exp2. Compare execution time

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Parallel
Application

 endif
 endif
 if (do_dsa) then
 i = i0 - i2
 do mi = 1, mmi
 m = mi + mio
 do lk = 1, nk
 k = k0 + sign(lk-
 do j = 1, jt
 face(i+i3,j,k,1
 & + wmu(m)*p
 end do
 end do
 end do
 endif

c J-inflows for block (j=j0 boundar
c
 if (ns_rcv .ne. 0) th
 call rcv_real(ns_r
 else
 if (j2.lt.0 .or. j
 do mi = 1, mmi
 do lk = 1, nk
 do i = 1, it
 phijb(i,lk,m
 end do
 end do
 end do
 else
 leak = 0.0
 do mi = 1, mmi
 m = mi + mio
 do lk = 1, nk
 k = k0 + sign(
 do i = 1, it
 phijb(i,lk,m
 leak = leak
 & + weta(

ranks: 1 -1 0 1 0
TERM: 1113 657 3
1020133_100897b_100792b_1004b17_100
23ab_1002e1b_12885bb_128882f
10 2
12 150
14 16
1b 6000
1a 4

ranks: 1 -1 0 1 0
TERM: 1102 975 5
1028dc3_1008a17_1008007_1004b17_100
23ab_1002e1b_12885bb_128882f
PRSD: 79 2
1020133_100897b_100792b_1004b17_100
23ab_1002e1b_12885bb_128882f
10 2
12 150
14 16
1b 12000
2b 1

ranks: 1 -1 0 1 0
TERM: 1113 977 3
1020133_100897b_100792b_1004b17_100
23ab_1002e1b_12885bb_128882f
10 2
12 150
14 16
1b 8000
1a 4

ranks: 1 -1 0 1 0
TERM: 1102 1295 5
1028dc3_1008a17_1007e5b_1004b17_100
23ab_1002e1b_12885bb_128882f
PRSD: 79 2
1020133_100897b_1007af3_1004b17_100

For each i1 in {1, ..., 80} {
 If i1 <> 1 then Tasks t79 such
that t79 is in {1, 2} compute for
13 microseconds then
 If i1 = 1 then Tasks t79 such
that t79 is in {1, 2} compute for
23 microseconds then
 Tasks t80 such that t80 is in {1,
2} receive a 1200-byte message
from tasks t81 such that (t81 =
(t80 + 1) mod num_tasks /\ (
((i1-1)*1) mod 1 = 0))
 then
 Tasks t82 such that t82 is in {1,
2} compute for 249 microseconds
then
 Tasks t83 such that t83 is in {1,
2} send a 1200-byte message to
unsuspecting tasks t84 such that (
t84 = (t83 + 15) mod num_tasks /\ (
((i1-1)*1) mod 1 = 0))
 then
 Tasks t85 such that t85 is in {1,
2} compute for 8 microseconds then
 Tasks t86 such that t86 is in {1,
2} send a 1200-byte message to
unsuspecting tasks t87 such that (
t87 = (t86 + 4) mod num_tasks /\ (
((i1-1)*1) mod 1 = 0))
}
For each i1 in {1, ..., 80} {
 Tasks t88 such that t88 is in {1,
2} compute for 13 microseconds
then
 Tasks t89 such that t89 is in {1,
2} receive a 1200-byte message
from tasks t90 such that (t90 =
(t89 + 1) mod num_tasks /\ (
((i1-1)*1) mod 1 = 0))

sharonm
Typewritten Text
Touch blue boxes to view

	ncptl par app button:
	ncptl app trace button:
	ncptl gen button:
	Button7:
	Button6:
	Button5:
	Button4:
	Button3:
	Button2:
	Button1:
	Button8:

